
Master Thesis
Software Engineering
Thesis no: MSE-2003:20
June 2003

Situation assessment and role selection
in the simulated RoboCup domain

Mattias Sjöberg Johan Sturesson
pt99msj@student.bth.se pt99jst@student.bth.se

Department of
Software Engineering and Computer Science
Blekinge Institute of Technology
Box 520
SE - 372 25 Ronneby
Sweden

This thesis is submitted to the Department of Software Engineering and Com-
puter Science at Blekinge Institute of Technology in partial fulfillment of the
requirements for the degree of Master of Science in Software Engineering. The
thesis is equivalent to twenty weeks of full time studies.

Contact Information:
Author: Mattias Sjöberg
Address: Ågatan 12, SE - 295 38 Bromölla
E-mail: pt99msj@student.bth.se

Author: Johan Sturesson
Address: Östrastorgatan 17A, SE - 294 31 Sölvesborg
E-mail: pt99jst@student.bth.se

University advisor:
Stefan Johansson
Department of Software Engineering and Computer Science

Department of
Software Engineering and Computer Science Internet : www.bth.se/ipd
Blekinge Institute of Technology Phone : +46 457 38 50 00
Box 520 Fax : + 46 457 271 25
SE - 372 25 Ronneby
Sweden

Abstract

In the recent world championships of the simulated RoboCup league the
winning teams possessed low level behaviours, such as kick and pass, that were
close to perfection. In order to improve a team’s performance you will need,
beside perfect low level behaviours, a good management of the team.

We present a model for managing a team in the simulated RoboCup league.
The model is based on techniques used by the recent winners in the league and
allows you to get a well coordinated team of agents striving for a common goal.

The model supports different formations in different situations, which con-
tributes to a dynamic team play, where the players can adjust to their opponents
and other factors like time left and goal difference. For example if the game is
near the end and the team is loosing a more risky and aggressive tactic is chosen.

Keywords: Situation, Role, RoboCup, Multi-Agent system

Contents

1 Introduction 1
1.1 RoboCup . 1

1.1.1 Simulated league . 2
1.1.2 Environmental issues . 2
1.1.3 CRaPI, a RoboCup API 3
1.1.4 Yaffa, a RoboCup player 4
1.1.5 EFA Electric Field Approach 4

1.2 Problem description . 4
1.3 Delimitations . 4
1.4 Method . 5

1.4.1 Literature survey . 5
1.4.2 Series of tests . 5

1.5 Outline of the thesis . 5

2 Modelling in RoboCup 6
2.1 Contemporary research . 6

2.1.1 CMUnited98 . 6
2.1.2 CMUnited99 . 7
2.1.3 FC Portugal . 7
2.1.4 Tsinghuaeolus . 7

2.2 Our model . 8
2.2.1 Configuration process . 9

3 Result 13
3.1 Architecture . 13
3.2 Series of tests . 14
3.3 Evaluation . 14

3.3.1 Maintainability assessment 14

4 Discussion 18
4.1 Results . 18
4.2 Problems . 18

5 Conclusion 20
5.1 Future work . 20

6 Acknowledgements 21

Bibliography 22

i

ii

Appendix 24

A Behaviours in Yaffa 24

B Situations in Yaffa 27

C Implementation of EFA 29

Chapter 1

Introduction

The goal of RoboCup is defined as:

“By the year 2050, develop a team of fully autonomous humanoid
robots that can win against the human world soccer champion team.”

-RoboCup Federation [4]

The goal and timetable are aimed to advance the overall level of technology
in society. There will be several technological achievements even if the goal is
not completely fulfilled, ranging from improved sensor technology to advanced
multi-agent coordination policies.

1.1 RoboCup

Mackworth introduced the idea of using soccer-playing robots in research [3].
Unfortunately, the idea did not get the proper response until the idea was further
developed and adapted by Kitano, Asada, and Kuniyoshi, when proposing a
Japanese research program, called Robot J-League, a professional soccer league
in Japan [3].

During the autumn of 1993, several American researchers took interest in
the Robot J-League, and it thereafter changed name to the Robot World Cup
Initiative or RoboCup for short. RoboCup is sometimes referred to as the
RoboCup challenge or the RoboCup domain. In 1995, Kitano et al. proposed
the first Robot World Cup Soccer Games and Conferences to take place in 1997
[3].

The aim of RoboCup was to present a new standard problem for Artificial
Intelligence and robotics, somewhat jokingly described as the life of AI after
Deep Blue [3]. RoboCup differs from previous research in AI by focusing on
a distributed solution instead of a centralized solution, and by challenging re-
searchers from not only traditionally AI-related fields, but also researchers in
the areas of robotics, sociology, real-time mission-critical systems, etc.

1

CHAPTER 1. INTRODUCTION 2

To co-ordinate the efforts of all researchers, the RoboCup Federation was
formed. The goal of RoboCup Federation is to promote RoboCup, for example
by annually arranging the world cup tournament. Members of the RoboCup
Federation are all active researchers in the field, and represent a number of
universities and major companies. As the body of researchers is quite large and
widespread, local committees are formed to promote RoboCup-related events in
their geographical area.

In order for a robot team to actually perform a soccer game, various technolo-
gies must be incorporated including: design principles of autonomous agents,
multi-agent collaboration, strategy acquisition, real-time reasoning, robotics,
and sensor-fusion. RoboCup is a task for a team of multiple fast-moving robots
in a dynamic environment.

1.1.1 Simulated league

The RoboCup simulator league is based on the RoboCup simulator, the soccer
server [3]. The soccer server supports competition among multiple virtual soccer
players in an uncertain multi-agent environment, with real-time demands as well
as semi-structured conditions.

One of the advantages of the soccer server is the abstraction made, which
relieves the researchers from having to handle robot problems such as object
recognition, communications, and hardware issues, e.g. how to make a robot
move. The abstraction enables researchers to focus on higher level concepts
such as co-operation and learning. Since the soccer server provides a challenging
environment, i.e. the intentions of the players cannot be mechanically deduced,
there is a need for a referee when playing a match. The included artificial referee
is only partially implemented and can detect trivial situations, e.g. when a team
scores. However, there are several situations that are hard to detect in the soccer
server, e.g. deadlocks, which bring the need for a human referee.

As to now, there have been five world cups and one pre-world cup event [3].

1.1.2 Environmental issues

The type of environment in RoboCup is one of the hardest to deal with according
to the definition of environments in “Artificial Intelligence, A modern approach”
[9].

• It is inaccessible since the field of view is limited to the view angle and
it is only possible to see a part of the soccer field, i.e. the agent has to
maintain an internal state of the soccer field.

• It is nondeterministic from the agents point of view1 because the next
state of the environment cannot be determined by its current state and
the actions selected by the agent. For instance, there are 21 other players
the agent can only guess what actions they will select, and it is not possible
to calculate the exact trajectory of the ball.

1It is deterministic from the viewpoint of the system, since even the noise can be predicted
given that the randomization key and the movement model is known.

CHAPTER 1. INTRODUCTION 3

• It is nonepisodic because the agent has to plan its actions several cycles
ahead, and every action the agent does has impact on the subsequent
cycle.

• It is semi-dynamic because the environment will not change while the
agent is deliberating if the agent comes to a decision and acts within
passage of the cycle time (currently 100ms). If the agent does not send a
command to the server before the ending of the cycle, the server calculates
the next state without any action from the agent.

• It is discrete in the sense that the agent knows what flags and number of
players he can see, and what actions the he can do. But it is continuous
in the sense that the possible perceptions of the flags and the players are
neither limited nor clearly defined.

1.1.3 CRaPI, a RoboCup API

CRaPI - Correct Robust and Perfect API for simulated RoboCup, is our attempt
to provide an API that is well documented and simple to use.

The responsibilities of CRaPI is to provide an up-to-date model of the cur-
rent state of the environment, a means of communication with the soccer server
and a set of utility functions to relieve the user of tedious calculations not related
to agent design. In order keep CRaPI independent of the agent architecture cho-
sen by the user, it is driven by events. The current size of CRaPI is 7228 LOC.
See the CRaPI manual concerning the details of how to set up a team using
CRaPI [12].

An architectural overview of CRaPI is shown in Figure 1.1. The main parts
are;

Figure 1.1: Architectural overview of CRaPI

WorldModel The WorldModel is the agent’s internal representation of the
current state of the environment. The responsibilities of the WorldModel
is to calculate the positions, velocities and directions of all objects in the
environment, based on perceptual inputs.

CHAPTER 1. INTRODUCTION 4

WorldState Prediction Since perceptual inputs are not synchronized with
the server cycles, a prediction of the world state is needed to maintain
high coherence with the actual state of the world.

Clock The internal clock is needed to keep track of when a cycle is about to
end, and hence when a command has to be sent to be executed by the
server in the current cycle.

Utility The utility module provides a set of useful tools, mostly concerned with
geometrical calculations.

I/O The I/O module is responsible for maintaining the communication with
the soccer server.

1.1.4 Yaffa, a RoboCup player

Yaffa - Yet Another Force Field Approch, is our RoboCup player. The develop-
ment of Yaffa has been the single largest task of the project. Yaffa is built on
top of CRaPI and uses the electric field model for action selection. The current
size of Yaffa is 8630 LOC.

1.1.5 EFA Electric Field Approach

In autonomous robotics, artificial potential fields are often used to plan and
control the motion of physical robots [7]. The Electric Field Approach [5] is
proposed as a generalization of traditional potential field approaches, which al-
lows for both motion control and object manipulation. The main concepts of
the electric field approach are artificial charges and probes, where strategically
important positions of the probe are positively charged and “dangerous” posi-
tions negatively charged. The electric field is then used as a heuristic for action
selection by simulating the potential at the probed position for each action. The
action resulting in the highest potential in the probed positions is regarded as
the most suited for execution in the current situation.

1.2 Problem description

Can a model, representing a team configuration in the simulated RoboCup
domain, be built with consideration on maintainability?

1.3 Delimitations

The scope of this thesis is to construct a model for the configuration of a team
of agents in the simulated RoboCup domain. The model will link players to
specific roles in different situations, and will not focus on the specific low level
behaviours of each agent.

CHAPTER 1. INTRODUCTION 5

1.4 Method

Two research methods were utilized in the project; a literature study and an
evaluation through experimentation.

1.4.1 Literature survey

The first task was to conduct a literature survey of architectures for RoboCup
multi-agent systems, searching for different role and situation assessment tech-
niques. Knowledge about what others already had achieved would be a guideline
to us.

1.4.2 Series of tests

The second task was to construct a model, design and implement a team using
it, and by performing series of tests, insure that it is accurate.

1.5 Outline of the thesis

This thesis begins in chapter 1 with a description of the simulated RoboCup
league and the pre-developed modules needed to build our application. Chap-
ter 2 begins with a description of some of the different situation assessment
techniques developed by the recent winners in the world championships of the
league, followed by the model we constructed. In chapter 3 we present our re-
sults, we discuss them in chapter 4 and conclude the thesis in chapter 5 with a
suggestion on further work in the area.

Chapter 2

Modelling in RoboCup

2.1 Contemporary research

We started with a literature study, looking at the most recent winners in the
RoboCup simulated league. There is an obvious pattern, the winner always wins
big overall, and hardly ever lets the opponents score. In table 2.1 we present
a collection of the statistics about the simulated league that we collected from
RoboCup’s official homepage[1].

Winning team Year Place Goals Games played No. teams
CMUnited98 1998 Paris 66 - 0 8 34
CMUnited99 1999 Stockholm 110 - 0 8 37
FC Portugal 2000 Melbourne 94 - 0 8 43

Tsinghuaeolus 2001 Seattle 90 - 1 12 44
Tsinghuaeolus 2002 Fukuoka 151 - 1 13 45

Table 2.1: Statistics from the simulated league.

2.1.1 CMUnited98

CMUnited98 was the team that introduced the terms formation and role into
the world of RoboCup. By doing so, they added flexibility to the team. The
players have flexible positioning within their roles, different roles have specific
behaviours, they can make dynamic switches between formations and they have
set plays(a formation in a certain situation) defined to know how to act in
certain situations, eg. corner, kickoff, etc.

They use a locker room agreement, a mechanism for defining pre-determined
multi-agent protocols accessible to the entire team, to specify an initial forma-
tion, an initial map from agents to roles and run-time triggers for dynamically
changing the formation.

The flexible teamwork structure allows for task decomposition and dynamic
role assignment. The formation is chosen based on goal difference and time left

6

CHAPTER 2. MODELLING IN ROBOCUP 7

in the game, this is information that all players for certain have knowledge of.
The role selection is a more complex task, since it may be difficult to determine if
a role already has been taken by another agent. This is solved by implementing
the behaviours according to the fact that one or more agents can possess the
same role at the same time.

The team uses communication between the agents, but since the commu-
nication in RoboCup is not reliable in all situations, they can not have com-
munication as the only option, they need the agents to be able to be totally
autonomous [11].

2.1.2 CMUnited99

The changes that were made to CMUnited99 compared to CMUnited98(see
2.1.1) were mostly in the low level skills. The behaviours were improved upon
and an online coach was added to shout out the exact ball position whenever
there were an interruption in the game, such as kick in, kick off, offside, etc.
None of these changes were of interest to this thesis since we focused on the
management of the team [10].

2.1.3 FC Portugal

FC Portugal is the result of a cooperation project between the university of
Averio and Porto in Portugal. FC Portugal is built upon CMUniteds low-level
source code. Only small modifications were performed on the shooting and
dribbling abilities of the players. The concept of formation and positioning
introduced by CMUnited was extended by introducing strategy that included
tactics, situations and player roles.

A Strategy includes a set of Tactics, predefined rules for activating the tac-
tic, a set of roles that a player can possess and information concerning opponent
modelling strategy, teammate modelling strategy and protocols for Communi-
cation.

A Tactic is defined by a set of formations, predefined rules for activating the
formation. The valid tactic is selected from the global information, including:
information about time current result and game statistics. For example if the
game is near the end and the team is loosing a more risky and aggressive tactic
is chosen.

A Formation is defined by the player positions inside the formation and the
player role. The valid formation is chosen from situation information, including:
ball possession, ball information and player information.

A Role is defined by a set of characteristics(behaviours) for players that
include: strategic, ball possession and ball recover characteristics [6] [8].

2.1.4 Tsinghuaeolus

Team Tsinghuaeolus explains the importance of the basic skills a RoboCup team
should possess, such as kick, dribble, etc. In the world championship in Seattle

CHAPTER 2. MODELLING IN ROBOCUP 8

2001 many teams had behaviours that were close to perfection. The main effort
in building a team should be above the basic skills, and focus more on the
management of the team. Team Tsinghuaeolus built their model with
CMUnited (see 2.1.1, 2.1.2) as an initial reference. Since we did not find any
report about Tsinghuaeolus’ model, we started to review their source code and
we found classes like formation and role, like all other teams we reviewed [13].

2.2 Our model

Modelling in RoboCup is usually done by altering the code. Our implementation
allows you to alter in a database and achieve specific behaviours in certain
situations. You can simply build a whole team from scratch, without having to
write a single line of code, and let them play according to your tactic, with your
formations and with the behaviours that you specify. If you feel you need extra
rules or behaviours, then you need to implement those according to superclasses.
The objects identified through our research are represented in figure 2.1 and
explained in the following section.

Figure 2.1: A visual representation of the model.

Planner The main part of the decision maker. Based on the current Strategy,
Tactic and Situation a Formation is chosen. A set of Behaviours is then
evaluated depending on which Role the individual player has in the current
Formation. The Behaviour found to be most appropriate according to the
evaluation is chosen for execution in the current cycle.

Strategy The Strategy is a high-level configuration of the team, allowing for
different set-ups when meeting different teams. It is the wrapper class for
all other classes, i.e. it contains all the tactics and is the only class known
by the planner.

CHAPTER 2. MODELLING IN ROBOCUP 9

Tactic The Tactic is a configuration of Formations depending on the current
situation in a game. Different Tactics can be used to customize the play
when the team is at a disadvantage, compared to when it is leading. Each
Tactic is controlled by a Tactic rule, which validates it and ensures that
the whole team has the same Tactic. A Tactic rule should be based on
information that is known, without any doubt, to every agent in the team,
such as goal difference and the time left. To base the rules on ballposition
and other more insecure data might result in different Tactics for different
agents in the same team.

Situation A Situation consists of a various number of factors, e.g time left,
goal difference, playmode, position of player, position of ball, position of
opponent, etc. These factors need to be taken into consideration when
the player chooses what action to perform. It is important to make sure
that there is always one Situation available and only one, otherwise there
will be a conflict and the right Formation might not be chosen. To make
the Situation less complex in our model, we extracted basic information
about time left and goal difference from the Situation rules and into the
Tactic rules.

Formation A Formation is a set of Roles, that form the set-up of the team in
a Situation, e.g. 4-3-3, 3-3-4, etc. It should have a distinct set of Roles.
The Formation is chosen based on the current Situation and Tactic rule.

Role A Role is a set of Behaviours and a home position. A player should have
one Role, and only one, at all times. The homeposition is the position on
the playfield where the player starts, and holds close to, to keep his place
in the Formation.

Behaviour Group A Behaviour Group is a collection of behaviours that a
player can take in action.

Behaviour A Behaviour is the actual action taken by the players. The Be-
haviour class is the super class of all Behaviours and forces the subclasses
to implement certain abstract methods for evaluation. We use Electric
Field Approach, see Section 1.1.5, for evaluating the different Behaviours.

EFA A heuristic for action selection, used to evaluate the Behaviours. See
section 1.1.5 for more information.

Database Used to store the configuration of Strategies, Tactics, Situations,
Roles and Behaviours.

2.2.1 Configuration process

To be able to create a good team, you should have at least a situation rule for
each of the different playmodes in the RoboCup server. You can add a situation
rule for anything that is represented in the worldmodel, you just have to make
sure that there is no conflict between the different rules, in which case it is not
certain you will achieve the desired behaviour.
To simplify the process, we assume that all the behaviours, situations and tactic
rules are implemented.

CHAPTER 2. MODELLING IN ROBOCUP 10

Figure 2.2: A visual representation of the database.

2.2.1.1 Use Case - Add a rule

This Use Case is specific for the Yaffa player. The model requires only that the
name of the implemented rule has the same name in the database to be fired.

There a two types of rules, situation and tactic rules. They both inherit from
the class TeamYaffa.Yaffa.Rules.Rule and they need to be in the correct path,
TeamYaffa.Yaffa.Rules.Rule.Situation and
TeamYaffa.Yaffa.Rules.Rule.Tactic. An example of the difference between
the two could be that the tactic rules evaluate if your team is winning, losing
or playing equal. The situation rules define what current playmode the server
has and in what fieldhalf the ball is located.

1. Implement the class, in the right directory, inheriting from
TeamYaffa.Yaffa.Rules.Rule.

2. Compile the new class.

3. In case of a situation rule, add the name of the class to the database table
’Situation’ (without ”.cs”) and connect it to a formation by inserting
the id of the situation in the ’TFS’ table along with the corresponding
formation and tactic id.

4. In case of a tactic rule, insert the name of the class (without ”.cs”) in
the desired tactic row.

2.2.1.2 Use Case - Add a behaviour

This Use Case is specific for the Yaffa player. The model requires only that
the name of the implemented behaviour must be the same as the name in the
database.

CHAPTER 2. MODELLING IN ROBOCUP 11

The created behaviour must inherit from the class
TeamYaffa.Yaffa.ActionModel.Behaviours.Behaviour and needs to be in
the correct path, TeamYaffa.Yaffa.ActionModel.Behaviours.

1. Implement the class, in the right directory,inheriting from
TeamYaffa.Yaffa.ActionModel.Behaviours.Behaviour.

2. Override the method canHandle(), preconditions to the behaviour.

3. Override the method Evaluate(), evaluation of the behaviour.

4. Override the method Perform(), what action to perform of this behaviour.

5. Override the method Continue(), continue the action of the behaviour.

6. Override the method Reset(), reset global values of the behaviour.

7. Compile the new class.

8. Add the name of the class to the database table ’Behaviour’ (without
”.cs”)

2.2.1.3 Use Case - Build a team

1. Build Strategy

(a) Define all the field weights in the table ’Field’.

(b) Create a new row in table ’Strategy’ and point the field values to
the corresponding field value.

2. Build Tactic

(a) Define the tactic rule it will correspond to (see 2.2.1.1).

(b) Define all the tactics with corresponding rules in the table ’Tactic’

(c) Link the strategy to the tactic(s) by entering the Tactic Id and Strat-
egy Id in the table ’StrategyTactic’.

3. Define Behaviour

(a) Define the behaviour (see 2.2.1.2).

(b) Define all the behaviours the team will use in the table ’Behaviours’.

(c) Define all the different behaviour groups the team will use, eg. de-
fender, forward, goalie, etc, in the table ’BehaviourGroups’.

(d) Link the behaviours to the behaviourgroup in the table ’BehaviourGroupBehaviour’.

4. Build Roles
The x coordinate of the homeposition must be between -52.5 and 52.5,
the y coordinate of the homeposition must be between -34 and 34. The
behaviourgroup must be specified in the table BehaviourGroup.

(a) Insert the x and y coordinate for the homeposition in the table ’Role’

CHAPTER 2. MODELLING IN ROBOCUP 12

(b) Link the role with the wanted behaviourgroup by entering the Be-
haviourGroup Id in the table ’Role’.

5. Build Formation

(a) Link wanted roles for the formation by entering the Role id for each
player in the formation in the table ’Formation’.

6. Define Situation

(a) Define the situation rule that the formation will correspond to (see
2.2.1.1).

(b) Define all the situations that the team will consider in the table
’Situation’.

7. Link the model together
’TFS’ (Tactic Formation Situation), you must link a formation to a situ-
ation for each tactic you have created.

(a) Link the formation with the tactic and the situation it will correspond
to by entering the Formation Id in the table ’TFS’.

(b) Link the formation with the tactic by entering the Tactic Id in the
table ’TFS’.

(c) Link the formation with the situation by entering the Situation Id in
the table ’TFS’.

8. Start your team by giving the strategyname you created as an input pa-
rameter.

2.2.1.4 Use Case - Alter a team

To make changes to the configuration of a team, you simply alter it in the
database. To make the correct changes you follow the appropriate procedure in
2.2.1.3.

Chapter 3

Result

3.1 Architecture

Our application Yaffa (see 1.1.4) is built upon CRaPI (see 1.1.3). Yaffa starts
by connecting a CRaPI player to the soccer server [3], and then continues by
loading the team data from the database. A strategy object is created, which
holds all the values of the fields to be used in the EFA and a reference to all
the tactics that are included in this strategy. Each tactic has a rule (tacticrule)
that indicates if it is currently valid or not. A Tactic holds a set of formations
that also has rules (situationrules) to indicate whether they are to be used or
not. A formation consists of eleven roles, each player is assigned to one specific
role. By having all the roles in each agent, each player has knowledge about
the other teammates in the current situation and can make more sophisticated
predictions about how teammates will act. Each role has a set of behaviours
and a home position. The home position is used to keep the formation together
and the behaviours are evaluated by the EFA, see Section 1.1.5, each soccer
server cycle to find out what we can do and what we do best. In Figure:3.1 we
show the flow in the program.

Figure 3.1: Yaffa Architecture

13

CHAPTER 3. RESULT 14

3.2 Series of tests

To be able to perform tests on the model, we used a database containing the
situations presented in Appendix B.

The first task was to conduct a set of tests to make sure that the formation
of the team worked and each player had a unique role. To do this we filled the
database with different roles connected to different formations, and linked the
formations to different situations.

We used a soccermonitor with support for coach messages, which allowed us
to change playmode whenever suitable and made it possible to drag and drop
the ball all over the field. The players had two behaviours each, LocalizeBall
and RunHome (see Appendix A). This would make the players move according
to where the ball was located on the field but not trying to intersect it. The
players would also position themselves according to the current playmode, such
as corner kick, kick off, etc. The experiment went as expected and the players
ran as supposed (see figures: 3.2, 3.3, 3.4, 3.5, 3.6).

The second task was to verify that the formations held together during a
regular game, with all the different behaviours the different roles included. This
is a non trivial test, as always in the RoboCup domain, due to the many factors
of uncertainty. For instance, a minor error in a behaviour or a miscalculated
judgement of the importance of the behaviours in the EFA can cause strange per-
formance of the player, and the sources of the problem can be many. However,
we played against the world champions 2002 (see 2.1.4) and the configuration
worked as expected. We did not perform well, due to our poorly trained low
level behaviours, e.g. kick, pass, etc.

3.3 Evaluation

3.3.1 Maintainability assessment

To asses the model a Software Engineering process based on industrial practice,
called Scenario-based assessment by Jan Bosch, was chosen.

Scenario based assessment is particularly useful for development of quality
attributes. Quality attribute such as maintainability can be expressed very
naturally through change scenarios.

To perform this process a typical change profile for the model is created.
This profile will then be used to evaluate the effort required to adapt the model
to the new situation, a so called impact analysis (see Table 3.1).

The measurement of the effort will be the number new lines of code to the
adaption divided by the total lines of code for the system (15858). Low effort
implies high maintainability for the model [2].

3.3.1.1 The Profile

A selected profile [2] was selected for the assessment. A detailed description of
how the tests where conducted, see 2.2.1.3.

CHAPTER 3. RESULT 15

Figure 3.2: When the situation rule Ball Left Left is true, we configured the
players to be very defensive.

Figure 3.3: When the situation rule Ball Left Right is true, the defenders stay
behind while the forwards run in offensive mode and wait for passes from the
middlefielders.

CHAPTER 3. RESULT 16

Figure 3.4: When the situation rule Ball Right Left is true, the players in this
configuration change formation from 3-4-3 to 3-5-2.

Figure 3.5: When the situation rule Ball Right Right is true, the players go
back to 3-4-3.

CHAPTER 3. RESULT 17

Profile LOC Effort
Add new Tactic 0 0

Add new Tactic Rule 12 0,0004
Alter Tactic Rule 1 0,00006

Add new Formation 0 0
Add new Role 0 0

Add new Behaviour 70 0,0044
Add new Situation Rule 12 0,0004

Table 3.1: Statistics from scenario-based assessment.

Figure 3.6: The team’s formation when defending a corner kick, of course the
opponents would cause the players to move around and block them.

Chapter 4

Discussion

4.1 Results

The experiments were successful, if we see to the functionality of the model. The
agents behaved as expected and held the formations together. A disappoint-
ment is our poorly developed low-level behaviours, if compared to the world
champions. To be able to contest in the higher division you will need per-
fectly developed behaviours, trained by machine learning algorithms due to the
inconsistent data in the perception from the soccer server.

We used CRaPI as a platform for Yaffa since we were a part of the CRaPI-
team. We did not believe that the behaviours would be as far behind the
champions as they were.

The model is relaying upon the user to assure that there is no conflict be-
tween the different rules. Even though the model accepts conflicts, it might not
be a good solution when the team configuration grow big.

The model is following the development of the recent winners of the world
championship in the simulated RoboCup league. When CMUnited won in 1998
they introduced formations and roles into the league, and since then you will
find similar objects in a team.

Role selection in our model is non-functional, the agents get a role id upon
startup and play in that role the entire game. We have no communication proto-
col implemented, which we believe is a vital part for a successful implementation
of role selection. However, we considered it during the design phase, if a com-
munication engine and role selection logic are added, the implementation will
not need much alteration.

4.2 Problems

• Our agents seemed slower than the champions when we ran the teams
under the same circumstances. We believe the main reason for this to
be that our implementation is in C# while the champions uses C++.

18

CHAPTER 4. DISCUSSION 19

Another reason might be that our implementation is quite extensive and
demands a lot of memory to be able to have a dynamic play.

• Due to lack of computing power, we had a hard time testing. The syn-
chronization between the client and the server was not always syncronized
while testing, which led to misleading behaviours of the agents.

• Building a team configuration in the database becomes quite complex
when it grows big, due to all the relationships among the entities in the
database.

• To test and evaluate a RoboCup simulated league team are hard since
there are a lot of factors that can interfere. E.g.

– A team has eleven different agents with their own perception of the
world.

– Situation assessment might differ between agents in the same situa-
tion.

– Certain situations can be hard to invoke, e.g. if the situation is
depending on the positioning of the opponents.

Chapter 5

Conclusion

A model can be built, with consideration on maintainability, to represent a team
configuration in the simulated RoboCup domain.

The teams in RoboCup are taking on values from real life soccer as the
development proceeds. In order to be on top, fighting for a title in the world
championships, you need not only perfect behaviours but also a good manage-
ment of the team.

A situation is everything an agent perceive. You need to ’divide and conquer’
the situation into different levels to decrease the complexity. Based on these
levels the agents should be able to extract how to perform. In our model,
we present one general solution of how to represent domain knowledge and its
relationship to the agent.

5.1 Future work

• A graphical user interface to configure the database. You need a visual
representation of the data when the complexity grows, otherwise there is a
great chance of faults in the configuration that might be difficult to trace.

• Find a method to avoid conflicting rules.

• Optimize the low-level skills, such as kick, pass, etc.

• Enhance the precision of the world model.

• Add memory to the world model, and a model of how to decrease the
confidence value for an object depending on the time since it was last
perceived.

• Add role selection logic.

• Add communication protocol.

• Add execution plans for ’ahead’ planning in the agents.

• Apply our model to the RoboCup four-legged league [4].

20

Chapter 6

Acknowledgements

Stefan Johansson, B lażej Żak, Martin Hylerstedt, Anders Olofsson, Kenneth
Henningsson, Markus Bergkvist, Tobias Olandersson.

21

Bibliography

[1] http://www.robocup.org/games/31.html.

[2] Jan Bosch. Design & Use of Software Architectures Adopting and evolving
a product-line approach. Addison-Wesley, 2000.

[3] Mao Chen, Ehsan Foroughi, Fredrik Heinz, ZhanXiang Huang, Spiros
Kapetanakis, Kostas Kostiadis, Johan Kummeneje, Itsuki Noda, Oliver
Obst, Pat Riley, Timo Steffens, Yi Wang, and Xiang Yin. User Manual,
RoboCup Soccer Server, 2002.

[4] The RoboCup Federation. http://www.robocup.org/. last checked 2003-
05-22.

[5] Stefan Johansson and Alessandro Saffiotti. Using the electric field ap-
proach in the RoboCup domain. In A. Birk, S. Coradeschi, and S. Ta-
dokoro, editors, RoboCup 2001: Robot Soccer World Cup V, number 2377
in LNAI, pages 399–404. Springer-Verlag, Berlin, DE, 2002. Online at
http://www.aass.oru.se/˜asaffio/.

[6] Nuno Lau Lúıs Paulo Reis and Eugénio Costa Oliveira. Situation based
strategic positioning for coordinating a team of homogeneous agents, 2001.

[7] David W. Payton, J. Kenneth Rosenblatt, and David M. Keirsey. Plan
guided reaction,. IEEE Transactions on Systems, Man and Cybernetics,
No. 6, November/December 1990, 20:1370–1382, 1990.

[8] Lúıs Paulo Reis and José Nuno Lau. Fc portugal team descripton: Robocup
2000 simulation league champion paper, 2001.

[9] Stuart Russel and Peter Norvig. Artificial Intelligence a Modern Approach.
Prentice Hall, Upper Saddle River, New Jersey 07458, 1995.

[10] Peter Stone, Patrick Riley, and Manuela Veloso. The CMUnited-99 cham-
pion simulator team. In Manuela Veloso, Enrico Pagello, and Hiroaki
Kitano, editors, RoboCup-99: Robot Soccer World Cup III, Berlin, 2000.
Springer Verlag.

[11] Peter Stone and Manuela M. Veloso. Task decomposition and dynamic role
assignment for real-time strategic teamwork. In Agent Theories, Architec-
tures, and Languages, pages 293–308, 1998.

[12] Team Yaffa. http://crapi.sourceforge.net/. last checked 2003-05-24.

22

BIBLIOGRAPHY 23

[13] Cai Yunpeng Yao Jinyi, Chen Jiang and Li Shi. Architecture of tsinghuaeo-
lus. Technical report, State Key Lab of Intelligent Technology and System,
Department of Computer Science and Technology, Tsinghua University,
Beijing, 100084, P.R.China, 2001.

Appendix A

Behaviours in Yaffa

This appendix describes the behaviours we have used during our experiment.
Mate and Opponent charges can have either positive or negative charge. The
charges for the Ball, the HomePoint and the OpponentGoal charges are always
positive, whereas the TeamGoal and the Boundary charges are always negative.

Offensive and Defensive are special purpose charges, with linear spread func-
tions. The Offensive field has a negative charge in the team goal and a positive
charge in the opponent goal, and the opposite for the Defensive field.

BlockOpponent Interfere an opponent when the other team is in possession
of the ball.

Charges Mate[-], Opponent[+], Ball, HomePoint, Defensive.

Probes Predicted positions of the player, next to the blockable oppo-
nents.

DribbleWithBall Advance without losing control of the ball.

Charges Mate[+], Opponent[-], Self, Offensive, Boundary TeamGoal,
OpponentGoal.

Probes A set of dribble points on the offensive side of the player, which
are predicted possible positions of the ball, when the behaviour is
done executing.

GetPassable Make sure to be positioned where there is a free pass-path from
the ball-keeper, when the ball is in our possession.

Charges Opponent[-], HomePoint, Offensive, Ball Boundary.

Probes Predicted possible positions of the player, when the behaviour is
done executing.

IntersectBall Run to the closest possible intersection-point with the ball-
trajectory.

Charges Mate[-], Opponent[+], Ball, HomePoint, Defensive.

Probes Predicted position of the player next to the ball.

24

APPENDIX A. BEHAVIOURS IN YAFFA 25

LocalizeBall This behaviour is currently not incorporated in the EFA-model.
It localizes and focuses on the ball. Chosen for execution when no other
behaviour is applicable.

Charges None

Probes None

LocalizeMate This behaviour is currently not incorporated in the EFA-model.
It localizes and focuses on the last seen team mate. Chosen for execution
when no team mate is seen and no other behaviour than LocalizeBall is
applicable.

Charges None

Probes None

PassTheBall Passes the ball to a team mate.

Charges Mate[+], Opponent[-], Self, Offensive, TeamGoal, Opponent-
Goal, Boundary.

Probes Predicted position of the ball when the behaviour is done exe-
cuting.

RunHome Runs to the players home-position.

Charges Mate[-], Opponent[+], Ball, HomePoint, Offensive.

Probes The player at the home-position.

ShootAtGoal Shoots the ball to the most appropriate position within the goal.

Charges Mate[+], Opponent[-], Self, Offensive, OpponentGoal.

Probes The Ball.

KickOut This behaviour is currently not incorporated in the EFA-model.Take
care of the play modes corner kick and kick in. Kicks the ball to a team
mate.

Charges None

Probes None

BeforeKickOffMove This behaviour is currently not incorporated in the EFA-
model.Moves the player to its start position.

Charges None

Probes None

GoaliCatch Catch the ball.

Charges Mate[-], Opponent[+], Ball, Defensive, HomePoint, Self.

Probes The Ball.

GoalieIntersectBall Run to the closest possible intersection-point with the
ball-trajectory.

APPENDIX A. BEHAVIOURS IN YAFFA 26

Charges Mate[-], Opponent[+], Ball, Defensive, HomePoint.

Probes The Ball.

GoalieKickOutMove Make sure to be positioned where there is a free area
of players.

Charges Mate[-], Opponent[-], Ball, Defensive, HomePoint.

Probes Self.

GoaliePassTheBall Passes the ball to a team mate

Charges Mate[+], Opponent[-], Offensive, TeamGoal, OpponentGoal, Self.

Probes Predicted positions of the ball when the behaviour is done exe-
cuting.

GoalieStandStrategic Passes the ball to a team mate

Charges HomePoint, Ball, Defensive.

Probes Predicted position of the player when the behaviour is done ex-
ecuting.

Appendix B

Situations in Yaffa

This appendix describes the situations we used during our experiments. The
situation name and the conditions are mentioned, where Side is either the char-
acter ’l’ or ’r’. If the playmode equals free kick l and my side equals ’l’ then
free kick OurSide becomes true.

Ball Left Left Ball.X ≤ -26 ∧ playmode ≡ play on

Ball Left Right -26 < Ball.X ≤ 0 ∧ playmode ≡ play on

Ball Right Left 0 < Ball.X ≤ 26 ∧ playmode ≡ play on

Ball Right Right 26 < Ball.X ∧ playmode ≡ play on

Before Kick Off playmode ≡ before kick off

Corner Kick Our Upper Ball.Y < 0 ∧ playmode≡ corner kick OurSide

Corner Kick Our Lower Ball.Y > 0 ∧ playmode≡ corner kick OurSide

Corner Kick Opponent Upper Ball.Y < 0 ∧ playmode≡ corner kick OpponentSide

Corner Kick Opponent Lower Ball.Y > 0 ∧ playmode≡ corner kick OpponentSide

Goal Kick Our playmode ≡ goal kick OurSide

Goal Kick Opponent playmode ≡ goal kick OpponentSide

Kick In Our LL Ball.X ≤ -26 ∧ playmode ≡ kick in OurSide

Kick In Our LR -26 < Ball.X ≤ 0 ∧ playmode ≡ kick in OurSide

Kick In Our RL 0 < Ball.X ≤ 26 ∧ playmode ≡ kick in OurSide

Kick In Our RR 26 < Ball.X ∧ playmode ≡ kick in OurSide

Kick Off Our playmode ≡ kick off OurSide

Kick Off Opponent playmode ≡ kick off OpponentSide

Offside Our playmode ≡ offside OurSide

Offside Opponent playmode ≡ offside OpponentSide

27

APPENDIX B. SITUATIONS IN YAFFA 28

Time Over playmode ≡ time over

Kick In Opponent LL Ball.X≤ -26 ∧ playmode≡ kick in OpponentSide

Kick In Opponent LR -26 < Ball.X≤ 0 ∧ playmode≡ kick in OpponentSide

Kick In Opponent RL 0 < Ball.X≤ 26 ∧ playmode≡ kick in OpponentSide

Kick In Opponent RR 26 < Ball.X ∧ playmode≡ kick in OpponentSide

Free Kick Our LL Ball.X ≤ -26 ∧ playmode ≡ free kick OurSide

Free Kick Our LR -26 < Ball.X ≤ 0 ∧ playmode ≡ free kick OurSide

Free Kick Our RL 0 < Ball.X ≤ 26 ∧ playmode ≡ free kick OurSide

Free Kick Our RR 26 < Ball.X ∧ playmode ≡ free kick OurSide

Free Kick Opponent LL Ball.X≤ -26 ∧ playmode≡ free kick OpponentSide

Free Kick Opponent LR -26 < Ball.X≤ 0 ∧ playmode≡ free kick OpponentSide

Free Kick Opponent RL 0 < Ball.X≤ 26 ∧ playmode≡ free kick OpponentSide

Free Kick Opponent RR 26 < Ball.X ∧ playmode≡ free kick OpponentSide

Goal playmode ≡ Goal AnySide

Our Goalie Caught Ball playmode ≡ goalie catch ball OurSide

Opponent Goalie Caught Ball playmode≡ goalie catch ball OpponentSide

Free Kick Fault Our playmode ≡ free kick fault OurSide

Free Kick Fault Opponent playmode ≡ free kick fault OpponentSide

Back Pass Our playmode ≡ back pass OurSide

Back Pass Opponent playmode ≡ back pass OurSide

Appendix C

Implementation of EFA

Our implementation is based on two main components, the Engine and the
FieldGenerator. The responsibility for generating the fields is assigned to the
FieldGenerator, whereas all electric field calculations are handled by the Engine.

The main aspect of our design is to let the FieldGenerator pre-calculate as
much as possible before an actual game begins. Since the interaction between
electric fields is only a matter of superposition1, electric fields for all specified
types of charges can be pre-calculated. To improve the performance of the
superposition, the fields are implemented as layers of matrices in a composite
electrical field, hence no complete superposition of the fields are made, only the
probed position is superimposed.

The generation of a field surrounding a charge is made in three steps. The
first step is to calculate the size of the matrix that will represent the field. This
is done by calculating the radius around the charge where the potential reaches
a predefined threshold value, all values below this threshold value is ignored in
further calculations. The radius is calculated by applying a distribution formula,
which loosely mimics the potential distribution around real electric charges2:

p =
pcenter

dk
(C.1)

where p is the potential at distance d from pcenter and k is the decrease constant.
Extracting d from equation (C.1) we get the formula for the radius:

r = k

√(
pcenter

pthreshold

)
(C.2)

where r is the radius of the charge and pthreshold is the threshold potential. The
second step of the field calculation is to calculate the potential for each cell in
the field matrix. These calculations uses equation (C.1) with distance d set to
the distance in squares from the center multiplied with the size of each square.

1Superposition of electric fields means that the potential in a point p is the sum of the
potentials for all fields in point p.

2The potential distribution around real electric charges is described by Coulumbs law.
Equation (C.1) is equivalent to Coulumbs law when k = 2

29

APPENDIX C. IMPLEMENTATION OF EFA 30

The third and final step is to use the concept of superposition to add together
all the charges in the current field.

Apart from field generation based on potential distribution around artificial
charges, we also utilize a special purpose field generation of the boundary lines.
The purpose of this field is to defer the players from running outside the field,
but without setting an absolute condition. This field uses the same distribution
formula as equation (C.1). The difference between this calculation and the stan-
dard charge-based calculation is the way in which the potentials are distributed.
Since the boundary line field is designed to simulate a set of charges placed with
infinite density around the field, the potentials are decreasing only inwards on
the field, without using superpositioning.

Visualization of EFA

During the development of CRaPI [12], we learned that a tool to visualize the
view of the agent can be very useful. With such a tool we can confirm that the
agent has the view it is supposed to have. The tool we developed to visualize
the Electric Field Engine offers the following functionality:

• Configure the charges of the predefined fields that are generated for the
boundary line, a mate, an opponent, the ball and the agent.

• Position and configure static charges, e.g. the goal-charges.

• Compare the strength of the charges. You should be able to see both the
relative strength and the propagation of the charge.

In Figure C.1 some of the fields that can be configured with the Electric
Field Generator are visualized.

APPENDIX C. IMPLEMENTATION OF EFA 31

Figure C.1: Visualization of the Electric Field Generator

