
Tiro Quick Start
for Tiro version 2.0b and later

Markus Bergkvist
markus.bergkvist@bth.se

October 12, 2003

1 Introduction

This document gives a brief description on what Tiro is, and how you can start
developing your own RoboCup player1 with Tiro as the foundation.

Tiro is dependent on the CRaPI and the SituationDeviser libraries. CRaPI
provides the communication with the game server, a world model based on the
visual input, and some basic commands and actions the agent can perform as
request to the server. This document is mostly concerned with the SituationDe-
viser, but read Simulated RoboCup - Creating a generic API 2, for more details
on CRaPI.

The Tiro project is merely a way of starting your reasoning agents, hence
Tiro contains no logic on how to play RoboCup soccer. Default component used
by Tiro to enable playing RoboCup soccer is the SituationDeviser, but it can
easily be replaced with the component of your choice.

2 SituationDeviser

The SituationDeviser contains Situation rules, Formations, Roles, Zones and
Behaviours.

Each formation is composed of 11 roles and is linked to a situation rule.
When a rule fires, the linked formation is said to be the interim formation. The
SituationDeviser then selects the role, in the interim formation, the agent has
based on the agents role id.

Linked to the role is a set of behaviours and a zone. The zone is used to make
the agents concentrate their play in certain areas of the field in each situation.
This avoids “kiddie-soccer”, and makes the game smoother as the agents can
change the home location dependent on the current situation.

When the SituationDeviser decides what action to take each cycle, the be-
haviours in the current role is evaluated, and the behaviour with the highest
priority (of the behaviours where the pre-condition is met) is then run.

1A player for the RoboCup simulation league (http://sserver.sourceforge.net/)
2http://crapi.sourceforge.net/articles/

1



3 Database overview

The SituationDeviserSettings database contains the Situation rules, Forma-
tions, Roles, Zones and Behaviours the SituationDeviser reads when it initial-
izes. Any changes in the database will therefore affect the performance of the
agent.

Figure 1: ER-model of SituationDeviserSettings

4 Example: Extend the database

The default database (created by running Tiro.exe -m) is rather minimal and
needs to be extended in most of the tables to get a full team working. This ex-
ample describes what must be added to the database for the agent to handle the
GoalOur-situation. It is assumed that there exist a GoalManoeuvre behaviour
which makes the agents do their “goal dance”.

The first thing that must be done is to add an entry in the database that tells
the full path to the behaviour. Do this by entering a new line in the Behaviour
table with the next unique id and the full path (see Fig. 2).

Figure 2: Adding the path to the GoalManoeuvre behaviour to the database.

Next thing to do is to decide what set of behaviours that will run in the
situation. In GoalOur it is aptly to use LineUp and GoalManoeuvre. Add a new
entry in the BehaviourGroup table (see Fig. 3) and link the behaviours with
the behaviour group in the Behaviour BehaviourGroup table (see Fig. 4).

Before a new formation can be added to the database, the roles in that
formation must exist.

2



Figure 3: Adding the behaviour group GoalOurMove to the database.

Figure 4: Linking the behaviour group GoalOurMove with the behaviours
LineUp and GoalManoeuvre.

It is wise to have the agents “dance” at the same location they have when
it is kick off, therefore the zones from the BeforeKickOff formation is reused
(zone id 1-11), and all the agents will have the GoalOurMove behaviour group.
The role table will therefore look like Fig. 5 after the roles are added.

Figure 5: The Role table after the roles for the GoalOur formation are added.

Finally the Formation is created by linking the situation rule (rule id 12)
with the roles (role id 29-39), see Fig. 6.

3



Figure 6: The formation for the GoalOur situation.

5 Example: Create your own Deviser

When creating a new Deviser the abstract methods Evaluate() and Act() must
be implemented. Evaluate is called by Tiro at the beginning of a new cycle,
directly followed by a call to Act.

To make Tiro use the new Deviser you need to alter the createDeviser()
method in Tiro so an instance of the new Deviser is created.

By extending the SituationDeviser (see Fig. 7) the new Deviser can use
the SituationDeviser to evaluate the current situation. Based on the current
situation it can then do its own reasoning about the next action to perform.

Figure 7: An example on how to use another Deviser in Tiro, while preserving
the capabilities of the SituationDeviser.

4


