Simulated RoboCup
- Creating a generic API

M. Bergkvist T. Olandersson
pt99mbe@student.bth.se pt99tol@student.bth.se

J. Sturesson
pt99jst@student.bth.se

2003-01-16

Abstract

The field of simulated RoboCup is still in its infancy, the lack of a stable,
well-documented and public API is apparent. This report describes the
effort to provide such an API to the RoboCup community. The ambition
have been to keep the API agent architecture independent to allow for all
possible types of decision makers to be built on top of it.

Due to the inherent noise in the domain, we set out designing the po-
sitioning functionality with the use of fuzzy logic. The complexity of this
approach, and its inability to keep reasonable execution times when scaling
up from the field size of the legged league to the field size of the simu-
lated league, forced us to discard this approach in favour of the simplified
positioner now present in the APIL.

To enable users to immediately start using the API, we have created an
example player called Tiro. This player uses the common behaviour model,
and can easily be extended to fit a particular purpose.

Contents

Introduction

1.1 Educational purpose

1.2 Project goal

What is RoboCup

2.1 Background

2.2 The goals of RoboCup,

2.3 What is the SoccerServer?

24 Activedomains
2.4.1 RoboCup Soccer,
2.4.2 RoboCup Rescue
2.4.3 RoboCup Junior

2.5 Simulated league L.

The need for an API

Practical work

4.1 Fuzzylogic
4.1.1 Description oo
4.1.2 Domains
4.1.3 Fuzzy logic in the simulated league

42 CRaPI
4.2.1 Architectural overview
4.2.2 Worldmodel L.
4.2.3 Sensors e e
424 Timingo
4.2.5 Agent architecture independent

4.3 TIro e e e
4.3.1 DecisionMaker
4.3.2 GameState o
4.3.3 Behaviour
434 XML.

4.4 OPen soUICe v v v v v i e e et e e e e

5 Future work 21

5.1 Implement look-ahead 21
5.2 Generic parsero u e 21
5.3 Refine the visualization tool 21

Chapter 1

Introduction

The first part of the report describes the RoboCup domain to give a frame of
reference to the rest of the report. A short history of RoboCup is presented,
as well as the goals of RoboCup and the different domains it offers. The
second part describes the practical work we have performed. In this part
we describe the main parts of the API for simulated RoboCup that we have
developed. The discussion includes the problems that we have encountered
and the corresponding solutions that we have chosen.
The report is concluded with a discussion on future work in the area.

1.1 Educational purpose

According to the course plan [6], the course aims to provide the students
with:

e A deeper knowledge and understanding of an advanced topic
within the field of Computer and Information Science.

e Knowledge of current research results within the selected
topic.

e Knowledge of current state-of-the practice in the selected
topic.

1.2 Project goal

Our first and foremost goal was to gain experience in developing an archi-
tecture for a self-coordinating agent system. For this purpose we chose the
domain of simulated RoboCup, which provides an excellent test-bed for the
development of autonomous agents. Introducing the concept of competi-
tion to RoboCup, stimulates a deeper commitment, since most of us are
competitive by nature.

A secondary goal was to create a generic API for the development of
RoboCup agents, which we could offer to the community. Our impression
is that a stable API that is publicly available is much coveted. Hence, we
assume that it could benefit not only our own research, but anyone interested
in creating his or her own RoboCup team, without having to start from
scratch.

Chapter 2

What is RoboCup

2.1 Background

Mackworth introduced the idea of using soccer-playing robots in research.
Unfortunately, the idea did not get the proper response until the idea was
further developed and adapted by Kitano, Asada, and Kuniyoshi, when
proposing a Japanese research program, called Robot J-League, a profes-
sional soccer league in Japan.

During the autumn of 1993, several American researchers took interest
in the Robot J-League, and it thereafter changed name to the Robot World
Cup Initiative or RoboCup for short. RoboCup is sometimes referred to
as the RoboCup challenge or the RoboCup domain. In 1995, Kitano et al.
proposed the first Robot World Cup Soccer Games and Conferences to take
place in 1997.

The aim of RoboCup was to present a new standard problem for Al
and robotics, somewhat jokingly described as the life of Al after Deep Blue.
RoboCup differs from previous research in Al by focusing on a distributed
solution instead of a centralized solution, and by challenging researchers from
not only traditionally Al-related fields, but also researchers in the areas of
robotics, sociology, real-time mission critical systems, etc.

To co-ordinate the efforts of all researchers, the RoboCup Federation
was formed. The goal of RoboCup Federation is to promote RoboCup,
for example by annually arranging the world cup tournament. Members
of the RoboCup Federation are all active researchers in the field, and rep-
resent a number of universities and major companies. As the body of re-
searchers is quite large and widespread, local committees are formed to
promote RoboCup-related events in their geographical area.

In order for a robot team to actually perform a soccer game, various tech-
nologies must be incorporated including: design principles of autonomous
agents, multi-agent collaboration, strategy acquisition, real-time reasoning,
robotics, and sensor-fusion. RoboCup is a task for a team of multiple fast-

moving robots under a dynamic environment. [2]

2.2 The goals of RoboCup

The RoboCup Federation has set goals and a timetable for the research.
Setting goals and a timetable are means of pushing the state-of-the-art fur-
ther, in conjunction with formalized test-beds. The most important goal of
RoboCup is to advance the overall technological level of society, and as a
more pragmatic goal to achieve the following: By mid-21st century, a team of
fully autonomous humanoid robot soccer players shall win the soccer game,
in compliance with the official rule of the FIFA, against the winner of the
most recent World Cup. [2]

There will be several technological advancements, even if the goal of the
robotic soccer team is not reached, starting with Team-Partitioned, Opaque-
Transition Reinforcement Learning (TPOT-RL) which has found application
in the domain of packet routing in computer networks. TPOT-RL is a dis-
tributed learning method in domains where agents have limited information
about environmental state transitions. [2]

2.3 What is the SoccerServer?

Soccer Server is a system that enables autonomous agents to play a match of
soccer (association football) against each other. Soccermonitor is a program
that displays the virtual field from the soccerserver on the monitor (see
Figure 2.1).

A match is carried out in a client/server style: A server, soccerserver,
provides a virtual field and simulates all movements of a ball and players.
Each client controls movements of one player. Communication between the
server and each client is done via UDP/IP sockets. Therefore users can use
any kind of programming systems that have UDP /IP facilities.

The client sends commands to control a player of the client and receives
information from sensors of the player. In other words, a client program is a
brain of the player: The client receives visual and aural sensor information
from the server, and sends control-commands to the server. Each client can
control only one player. So a team consists of the same number of clients as
players. Communications between the clients must be done via soccerserver
using say and hear protocols. [2]

2.4 Active domains

Current RoboCup activities are divided in three areas; RoboCupSoccer,
RoboCupJunior and RoboCupRescue.

2] u e =[v]u] o] o] +{e] METEE 9] [w|0s] =ial> 4 ot
plav on 1415

Figure 2.1: This picture is a snapshot from the RoboCup World Cup 2002,
where the winning team TsinghuAeolus is about to score.

2.4.1 RoboCup Soccer

The competitive soccer has the main focus of the three areas of the RoboCup

organization. The researchers use the games to gain and exchange technical

information from each other. Another important purpose is that the games

also serve as a great chance to educate and entertain the public. [7]
RoboCupSoccer is divided into the following leagues:

e Simulation league

e Small-size robot league

Middle-size robot league

Four-legged robot league

e Humanoid league

2.4.2 RoboCup Rescue

Disaster rescue is one of the most serious social issues, involving very large
numbers of heterogeneous agents in a hostile environment. The intention
of the RoboCupRescue project is to promote research and development in
this socially significant domain at various levels involving multi-agent team
work coordination, physical robotic agents for search and rescue, information
infrastructures, personal digital assistants, a standard simulator and decision
support systems, evaluation benchmarks for rescue strategies and robotic
systems that are all integrated into a comprehensive systems in future [7].
RoboCupRescue is divided into the following leagues:

e RoboCupRescue simulation league

e RoboCupRescue robot league

2.4.3 RoboCup Junior

RoboCupJunior is a project-oriented educational initiative that sponsors
local, regional and international robotic events for young students. It is
designed to introduce RoboCup to primary and secondary school children,
as well as undergraduates who do not have the resources to get involved in
the senior leagues. The focus in the Junior league is on education. [7]

2.5 Simulated league

The RoboCup simulator league is based on the RoboCup simulator, the
soccerserver. All games are visualized by displaying the field of the simulator
by the soccer monitor on a computer screen. The soccer server is written to
support competition among multiple virtual soccer players in an uncertain
multi-agent environment, with real-time demands as well as semi-structured
conditions.

One of the advantages of the soccer server is the abstraction made, which
relieves the researchers from having to handle robot problems such as ob-
ject recognition, communications, and hardware issues, e.g., how to make
a robot move. The abstraction enables researchers to focus on higher level
concepts such as co-operation and learning. Since the soccer server provides
a challenging environment, i.e., the intentions of the players cannot be me-
chanically deduced, there is a need for a referee when playing a match. The
included artificial referee is only partially implemented and can detect triv-
ial situations, e.g., when a team scores. However, there are several hard to
detect situations in the soccer server, e.g., deadlocks, which brings the need
for a human referee. There have been four world cups and one pre-world
cup event. [2]

Chapter 3

The need for an API

Experience tells that the APIs that are available to the public are either
to bound to a specific solution, or have poor perception and a weak world
model. Another major drawback that has to be taken in to consideration is
the low level of usability. This is because they are often badly documented
and therefore it is difficult to gain a deep knowledge about them.

With a functional, well documented, stable and open source API, the
RoboCup community can be broadened. Developers can concentrate on
agent specific problems that the RoboCup domain provides and implement
different problem solving theories. Time and effort don’t have to be spent
on low level issues that are common to all RoboCup agent implementations.

Chapter 4

Practical work

The type of environment in RoboCup is one of the hardest to deal with
according to the definition of environments in ”Artificial Intelligence, A
modern approach [8].

4.1

It is inaccessible since the field of view is limited to the view angle and
it is only possible to see a part of the soccer field, i.e. the agent has
to maintain an internal state of the soccer field.

It is nondeterministic because the next state of the environment cannot
be determined by its current state and the actions selected by the
agent. For instance, there are 21 other players the agent can only
guess what actions they will select, and it is not possible to calculate
the exact trajectory of the ball.

It is nonepisodic because the agent has to plan its actions several cycles
ahead, and every action the agent does has impact on the subsequent
cycle.

It is semidynamic because the environment will not change while the
agent is deliberating if the agent comes to a decision and acts within
passage of the cycle time (currently 100ms). If the agent doesn’t send
a command to the server before the ending of the cycle, the server
calculates the next state without any action from the agent.

It is discrete in the sense that the agent know what flags and number
of players he can see, and what actions the agent can do. But it is
continuous in the sense that the possible perceptions of the flags and
the players is neither limited nor clearly defined.

Fuzzy logic

Fuzzy logic is a superset of conventional Boolean logic, which has been ex-
tended to handle the concept of partial truths. It was introduced by Dr.

10

Lotfi Zadeh of UC/Berkeley in the 1960’s as a means to model the un-
certainty of natural language, by allowing partial set membership rather
than crisp set membership or non-membership. This approach to set the-
ory was not applied to control systems until the 70’s due to insufficient
small-computer capability prior to that time. Professor Zadeh reasoned
that people do not require precise, numerical information input, and yet
they are capable of highly adaptive control. If feedback controllers could
be programmed to accept noisy, imprecise input, they would be much more
effective and perhaps easier to implement. [10]

4.1.1 Description

The major difference between fuzzy logic and Boolean (standard) logic is
that possible values range from 0.0 — 1.0 (inclusive), not just 0 and 1. For
example, you could say that the fuzzy truth value (FTV') of the statement
“Graham is tall” is 0.75 if Graham is 2 metres tall. To write this more
formally:

m(TALL(Graham)) = 0.75

m is a membership function and is the function that would map 2 metres
to an FTV of 0.75. Membership functions can be incredibly simple, or
incredibly complex. For example, a relatively simple membership function
could be:

0 Tz <H
m(TALL(z)) =4 %2 ; 5<a <7
1 x>"T

A formal definition of a membership function can be stated as a function
that maps each point of fuzzy set A to the real interval [0.0,1.0] such that
as m(A(z)) approaches the grade of membership for x in A increases. [10]

Logic operators

In Boolean logic there are V (union), A (intersection) and — (not) operators.
These operators exist in fuzzy logic too, but are defined differently:

o ANB=MAX(m(A(z)),m(B(z)))
e AV B = MIN(m(A(z)), m(B(z)))
e A-=1-—mA(x)

The intersection and union operators are the obvious departure from
both Boolean logic and standard probability functions. To see why they are
defined like this, let us look at an example. Take the statements “Graham is

11

very tall” and “Graham is very clever”, if you were to combine these using
probability, you would get:

m(TALL(Graham)) « m(CLEV ER(Graham)) = 0.90 x 0.90 = 0.81

Note: This is obviously making the assumption that 'very’ equates to 0.9
in both the membership functions TALL and CLEV ER. Let us also make
the assumption that the range [0.8 — 0.9] equates to ’quite’. The resulting
statement reads “Graham is quite smart and clever” this is obviously not
correct. Using fuzzy logic:

MIN (m(TALL(Graham))sm(CLEV ER(Graham))) = MIN(0.90,0.90) = 0.90

Which yields the correct statement “Graham is very smart and clever”.
The result of this gets more noticeable as more variables are taken into
consideration, for example 6 variables with values of 0.8 would yield 0.262
using probability, far from the fuzzy value of 0.8. [10]

Hedges

Hedges are operators that are independently created to modify the fuzzy val-
ues. Like a lot of fuzzy logic, they can be equated to English words. For ex-
ample, the hedge V ERY could be equated to m(A(z))2, or SOMEW HAT
to m(A(z))0.5. [10]

Note that equating words to fuzzy values and performing operations
upon them (e.g., LOWFERTHAN) requires complicated algorithmic ma-
nipulation. It has been done though, most notably by F. Wenstop who
equated words to 7-valued fuzzy vectors.

4.1.2 Domains

Fuzzy logic can be most readily applied to expert systems whose information
is inherently fuzzy. Doctors, lawyers, engineers can diagnose problems a lot
quicker if the expert system they use to diagnose the problem lists a few
fuzzy solutions that they can use to augment their own findings.

Another area the fuzzy logic is used is handwriting recognition, e.g. in
Japan, complicated Kanji strokes can be detected as they’re written using
fuzzy methods. Applications of fuzzy logic have also been seen in areas such
as cement kiln control and financial prediction/control.

An area of more direct interest to us is robotics navigation in noisy
environments. Team Sweden in RoboCup uses a landmark based navigation
of Sony legged aibo robots using fuzzy logic. It is used to account for errors
and imprecision’s in visual recognition and the poor odometry as a result of
using legged robots. [1]

12

4.1.3 Fuzzy logic in the simulated league

According to the RoboCup server manual the distance to a flag could be
distorted with approximately +-10%. Since this would give us a possible
error of 10 m on a 100 m distance we decided that our positioning should to
be able to handle this uncertainty. The choice fell on a positioning model
incorporating fuzzy logic, which have been used successively for navigation
in real life robots.

The first couple of weeks were spent on trying to understand the model
and to customize it to fit in our domain. When we realized that we were
running behind on the time schedule, we decided to visualize the data from
the server in order to establish if it had this high level of noise (see section
4.2.1).

With a graphical representation of the server data at hand, we imme-
diately realized that the data were far more accurate than it said in the
manual. Thus the need of a time consuming and implementation-difficult
fuzzy positioning model was clearly overrated. At this point we agreed upon
a simplified positioning model, that was a great deal easier to implement as
well as much less time consuming. Implementing this simplified model had
the benefit of a higher confidence in the stability of the positioner since the
possibilities of errors were drastically reduced, compared to if we were to
implement a fuzzy positioner with our novice skills in fuzzy logic.

4.2 CRaPlIl

CRaPI - Correct Robust and Perfect API for simulated RoboCup, is our
attempt to provide an API that meets the needs described in section 3.

4.2.1 Architectural overview

An overview of the architecture of CRaPI is shown in Figure 4.1. The central
unit is the Player, which communicates with the server via ServerConnec-
tion. Yaffa, to the extreme left, is shown as an example of a decision maker
that utilizes CRaPI.

4.2.2 Worldmodel

A world model is an agent’s perception of its environment. The world model
keeps track of all objects in the environment that an agent can perceive
with any of its sensors. Consequently, all that an agent knows about its
environment is kept in its world model. The main tasks of the world model
is therefore to constantly update its view of the position and direction of all
mobile objects in its surrounding.

13

Cammand

™ i

g Yalis fo e e e \‘-H TR Playe [it BerverCormetion [Peroeynn RoboCupdarver
11

' B - CRIP Clock
AL DokAD iR |
I cokkfoany's
[+ TumToOtmair)
4 TurnToPoinil|
------------- Danh ToOtRMC)
+ ToDbsecii]
|-DastiTofoict)
Db ToPoiell)
HickToORRl)
HiCkToPCRIL
LDl

Befprebiewyce Oy

AbeMirnCycie

BlaforsWorkhdorisl e

APt ke

[N R R Chaf- oy

T e—

BaforeCoachhiestage

AberCoachiessage I

BeforoPla ek !

i =
1
i

Figure 4.1: Architectural overview

Visualization tool

As we described in section 4.1.3, we developed a tool to visualize the data
from the server. The main reason was to simplify the interpretation of the
server data, to be able to ascertain the consistency between the player’s
world model and the view shown in the soccer monitor.

The visualization tool is developed for our needs only, it is not released
to the public. If we feel that there exist a demand in the community of such
a tool we might reconsider.

It offers the following functionality;

Which players world model to display
Toggle display of visible flags of the selected player

Toggle display of the intersections where the selected player can be
located

Toggle display of the selected player
Toggle display of the team mates of the selected player
Toggle display of the opponents of the selected player

Toggle display of the ball

14

e Display the position, body direction and face direction of the selected
player

[Frecuemeeat it =

e ges e s

L@ 0 |

= I R
P52 11 v (1 P [

Figure 4.2: Visualization of the world model where the position of the se-
lected player, the distance to the seen flags, the team mates and the ball is
displayed.

Positioning

The task of positioning can be divided into two major sub task, i.e. calcu-
lating the position of oneself, and calculating the position of all other mobile
objects. Mobile objects are all objects that have the possibility to change
location on the field, e.g. players and ball.

The calculation of the own location is based on the fact that the positions
of all flags are known, and that the agent receives the distance to the flags
that are currently within its view cone. The seen flags are drawn as black
solid dots in Figure 4.2.

The main parts of the positioning algorithm:

1. Sort flags according to distance.

15

2. A predefined number of flags are chosen for the calculation of inter-
sections.

3. For each intersection, calculate which square in the field grid it is
located and increase the counter for this square with one

4. Calculate the score of each square in the field grid by multiplying the
counter value with the squares inverted distance from the player.

5. The center of the square with the highest score is chosen as the location
of the player.

A special case occurs when no flags are seen, hence the location based
on intersections cannot be calculated. The CRaPI solution to this problem
is to use what is called dead reckoning, which basically is to calculate ones
position based on previous position, amount of speed and direction of speed
and the believed impact on previous action.

The next step is to calculate the location of all other mobile objects.
This is quite straightforward since the visual sensor gives information about
distance and direction to all seen mobile objects. The result can be seen in
Figure 4.2, where blue solid dots represent seen teammates and the white
solid dot represents the ball.

4.2.3 Sensors

The world model of a RoboCup client is updated with data received by its
array of sensors. The types of sensors that a RoboCup agent can utilize are;
visual sensor, physical sensor and aural sensor. The visual sensor receives
data for all objects that are visible to the agent, i.e. the objects that are
within the agents view cone and not too far away. The input is on the form:
(see Time ObjlInfo+). A list of possible ObjInfo for the see message is listed
in Table 4.1.

The physical sensor receives data concerning the state of the own body.
The input is on the form: (sense_body Time ObjInfo+). A list of possible
Objlnfo for the sense_body message is listed in Table 4.2.

The aural sensor receives data of what the agents hear. The sender
can either be another player, the referee or a coach. The input is on
the form: (hear Time Sender “Message”) or (hear Time Online_Coach
Coach_Language_Message). A description of the different data in the say
message is shown in Table 4.3.

4.2.4 Timing

All actions received by the server at the end of the simulator cycle will be
used when updating the state of the simulation. The Figure 4.3 shows an
example of the agent sending commands back to the sever, but due to the

16

ObjInfo Description

Distance The distance to the object.

Direction The direction to the object.

DistChange The change in distance to the object.

DirChange The change in direction to the object.

BodyDir The body direction relative the facing direction of
the agent, only if the object seen is another player.

HeadDir The head direction relative the facing direction of
the agent, only if the object seen is another player.

TeamName The team name of the seen player, only if the object
seen is another player.

UniformNumber The uniform number of the seen player, only if the
object seen is another player.

Table 4.1: Visual sensor data

delays in the network and the fact that the server takes some time before
reading the received message, they are not always executed in the same
simulation step as the agent sent them. Therefore the need of an internal
clock to keep track of when it is time to send a command to the server is a
vital part of every RoboCup agent.[4]

i l 1 1 i i- & gent tirn eline
P Z | :
I |
I |
i |
1 |
I |
I |
1]
I |
1 |
1 1
1]
P : | : s
- {_- ' — - Server imeline
t t+ t+2 t+3
————— B T inna] cemor data st - - B Dlocical ceror data cert ————W0 fction cont and eeoted

Figure 4.3: An illustration of what data the agent receives, when it is re-
ceived and when commands sent to the server will be received and executed.

The event driven, internal clock in CRaPI takes care of the timing of
the agent. When the client receives a sensor input from the server, CRaPI
supposes that a new cycle has begun and the internal clock is synchronized
with the server clock. The generated events of the internal clock are shown
in Table 4.4. Tt isn’t mandatory to receive all the events, its up to the user
to decide which events to be notified about.

17

ObjInfo Description

ViewQuality The current setting of the agent’s ViewQuality, af-
fects the amount and quality of the visual data sent
to the agent.
ViewWidth The current setting of the agent’s ViewWidth, af-
fects the amount and quality of the visual data sent
to the agent.

Stamina The current stamina of the agent.

Effort The current effort of the agent.

AmountOfSpeed The amount of the agent’s current speed vector.
HeadDirection The relative direction of the agent’s head.
DashCount The number of dashes made by the agent so far.
KickCount The number of kicks made by the agent so far.
SayCount The number of says made by the agent so far.
TurnCount The number of turns made by the agent so far.
TurnNeckCount The number of turn necks made by the agent so far.

Table 4.2: Physical sensor data

4.2.5 Agent architecture independent

For the reasons explained in chapter 3, we aimed to make CRaPI agent
architecture independent. This is solved by restricting CRaPI to only take
care of the communication with the server, build the worldmodel from the
perception and applying an event driven model.

The player using CRaPI is informed of changes with events, therefore
any part of the player can be notified about the events that are of interest.
It is possible to use CRaPI and build a new player just by registering for
the event AfterNewCycle, but it is also possible for a more advanced player
to register for all of the events in CRaPI. We have tried to publish events
for any state change in CRaPI. The core events of CRaPI is listed in Table
4.5

4.3 Tiro

Tiro is a RoboCup player that has been developed to allow users to quickly
start using the CRaPI framework. We developed it to provide a tutorial on
how to use CRaPI. There are three layers in Tiro that abstracts the decision
making; DecisionMaker, GameState, Behaviour. Tiro is parameterized and
is set up by XML.

18

’ Data Description

Sender The sender of the message.

Direction The relative direction to the sender. Re-
places the Sender data when the sender is
unknown.

Message The actual message.

Online_Coach A coach that can communicate directly to
the players and get noise free information
about movable objects.

Coach_Language Message | A standard language for online coaches.

Table 4.3: Aural sensor data

Event ‘ Description

TickPlayOn Indicating how much time there is left on
the current cycle.

TickPlayOff Indicating how much time has passed since

the match clock was stopped.

TickOnCycleSoonEnding | Indicating that the cycle will soon end.
TickOverTimeOnCycle Indicating that a new cycle should have been
received from the server.

Table 4.4: Events generated by the internal clock of CRaPI

4.3.1 DecisionMaker

The DecisionMaker is an abstract base class that defines the interface for
decision makers. StateAnalyzer is our implementation of a DecisionMaker,
which evaluates the current state of the game.

4.3.2 GameState

GameState is a class that when chosen by the StateAnalyzer evaluates the set
of associated Behaviours. Examples of GameStates are AttackGameState
and DefenseGameState, which have different Behaviours associated.

4.3.3 Behaviour

A Behaviour has two functions. The first function is to evaluate how benefi-
cial it is, in the current situation, for itself to be fired. The second function
is to produce a list of Commands that is to be sent to the server.

19

’ Event Description

BeforeNewCycle Indicating that a new cycle is coming once
the clock has been synchronized.

AfterNewCycle Indicating that a new cycle has started.

BeforeWorldModelUpdate | Indicating that the WorldModel is to be up-
dated.

AfterWorldModelUpdate | Indicating that the WorldModel is updated.

BeforeRefereeMessage Indicating that a RefereeMessage is to be
handled.

AfterRefereeMessage Indicating that a RefereeMessage has been
handled.

BeforeCoachMessage Indicating that a CoachMessage is to be
handled

AfterCoachMessage Indicating that a CoachMessage has been
handled

BeforePlayerMessage Indicating that a PlayerMessage is to be
handled

AfterPlayerMessage Indicating that a PlayerMessage has been
handled

Table 4.5: Core events in CRaPI

4.3.4 XML

XML is used extensively in Tiro to define parameters such as; team name,
server ip, server port and time out. XML is also used to define each Player
in the team. For each Player, the XML defines start location, which Deci-
sionMaker to use and which Behaviours to use for each GameState.

4.4 Open source

Both CRaPI and Tiro are open source. CRaPI is released under the Lesser
GPL license and Tiro is released under the GPL license. We have used the
services at SourceForge [9] for development and release, since it provides
the possibility of other developers to help improve CRaPI and Tiro. It also
provides us with a free homepage [3] where we e.g. provide information on
current development and documentation. By this we believe that it is easier
for future development of other RoboCup agent teams that wishes to test
and evaluate different reasoning methods.

20

Chapter 5

Future work

5.1 Implement look-ahead

A possible improvement for the decision maker would be to implement look-
ahead functions for all mobile objects and to calculate the impact on the
environment of the agent’s own actions. This forecasted information could
for example be utilized when developing goal-based agents that require a
number of actions to be taken to fulfil its goal.

5.2 Generic parser

All received messages from the soccerserver are currently parsed in an ad hoc
manner. A major improvement would be if the factory and expert patterns
were applied to detach the parsing from e.g. the world model, i.e. a generic
parser that is responsible for parsing server messages. This change would
improve the maintenance of CRaPI.

5.3 Refine the visualization tool

The visualization tool could for example easily be extended with functional-
ity to display the charges of an electric field, used in the EFA - Electric Field
Approach. This would be useful when tuning the placement and strengths
of the charges. More information on EFA can be found in "Using the Electric
Field Approach in the RoboCup Domain’ [5].

21

Bibliography

[1]

P. BUsCHKA, A. SAFFIOTTI, AND Z. WASIK, Fuzzy landmark-based
localization for a legged robot, in Proc. of the IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS), Takamatsu, Japan, 2000,
pp. 1205-1210. Online at http://www.aass.oru.se/ asaffio/.

M. CHEN, E. ForouGHI, F. HEINZ, Z. HUANG, S. KAPETANAKIS,
K. Kostiapis, J. KuMMENEJE, I. Nopa, O. OBsT, P. RILEY,
T. STEFFENS, Y. WANG, AND X. YIN, User Manual, RoboCup Soccer
Server, 2002.

CRAPI, http://crapi.sourceforge.net.

F. HEINZ, Robocup a system for developing robocup agents for educa-
tional use, master’s thesis, Linkdpings universitet, 2000.

S. JOHANSSON AND A. SAFFIOTTI, Using the electric field approach
i the RoboCup domain, in RoboCup 2001: Robot Soccer World
Cup V, A. Birk, S. Coradeschi, and S. Tadokoro, eds., no. 2377 in
LNAI, Springer-Verlag, Berlin, DE, 2002, pp. 399-404. Online at
http://www.aass.oru.se/ ~asaffio/.

PADO004, http://idenet.bth.se/, 4 November 2003.
RoBOCUP, http://www.robocup.org.

S. RUSSEL AND P. NORvIG, Artificial Intelligence - A Modern Ap-
proach, Prentice Hall, 1995.

SOURCEFORGE, http://sourceforge.net.

K. TomMsovic AND M. CHOW, Tutorial on fuzzy logic applications in
power systems, IEEE-PES Meeting in Singapore, (2000), p. 87.

22

